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Abstract. We calculate the equal-time commutator of two fermionic currents within the framework of the
1 + 1 dimensional fully quantized theory, describing the interaction of fermions with a vector boson. It is
shown that the interaction does not change the result obtained within the theory of free fermions.

1 Introduction

When quantizing the fermionic currents there occur ad-
ditional terms in the equal-time (E.T.) commutators, so-
called Schwinger terms. They can be determined by var-
ious methods, for instance perturbatively, see e.g. [1–4],
or cohomologically [5,6], and they have a great impact on
the theory [1].

Schwinger terms are also closely related to the anoma-
lies of QFT (for an overview see [7]). Whereas anomalies
do not get altered by considering quantized gauge fields
(due to the Adler–Bardeen theorem [8]) this is less clear
for the Schwinger terms (ST). Therefore it is our aim to
investigate ST in a fully quantized theory. We will work
in a 1 + 1 dimensional QFT describing the interaction of
fermions with a vector field. First we consider all fields as
massive; then we follow a limiting procedure. In that case
all calculations can be performed explicitly and we have a
natural continuation of [9], where the case of free fermions
was discussed.

The fact that all fields are quantized distinguishes this
work from others, where similar calculations were done for
the theories describing fermions interacting with external
fields (see e.g. [10–12] and the references given there).

There is one exception (known to the author) [13,14],
where the boson field is quantized too, but fermions are
considered as massless and the procedure used is quite dif-
ferent – from the start the currents are defined as compos-
ite operators via the point-splitting method. There is one
more difference. The point-splitting method defines a cur-
rent as some composite operator, whereas in Bogoliubov’s
definition the current is just one object. The procedure of
renormalization reflects this fact because a current is not
renormalized as a product of basic fields but rather as an
independent object.

a e-mail: sykora@hp01.troja.mff.cuni.cz

This paper is organized as follows. In Sect. 2 we start
with the definition of the “interacting” current Jµint

1 intro-
duced by Bogoliubov [15] in the framework of the formal-
ism of Epstein and Glaser [16] which is explained in detail
and extensively used in the book by Scharf [17]. Using this
definition we derive the explicit form of Jµint in the consid-
ered two-dimensional field theory model. The calculation
of the commutator is done in Sect. 3. The basic properties
of free fields are stated in Appendix A. In Appendix B we
rigorously show that in the case of our model the formal-
ism of Epstein and Glaser is equivalent to the ordinary
one using the T -product (time-ordered product).

2 Definition of the “interacting” current

Following Bogoliubov [15] and Scharf [17] we define

Jµ(x) ≡ S−1(g)
δS(g)

iδgµ(x)

∣∣∣∣
gµ=0

, (2.1)

where the S-matrix S and its inverse S−1 are expressed
in perturbative form as

S(g) ≡ 1 +
∞∑
n=1

n∑
k=0

ek

k! (n− k)!

×
∫
Tµ1,...,µn−k
n (x1, . . . , xn)

× gµ1(xk+1) . . . gµn−k
(xn)d2x1 . . .d2xn (2.2)

≡ 1 + T, (2.3)

S−1(g) ≡ 1 +
∞∑
n=1

n∑
k=0

ek

k! (n− k)!

1 The label “int” is to emphasize that the operator is not a
composite operator.
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×
∫
T̃µ1,...,µn−k
n (x1, . . . , xn)

× gµ1(xk+1) . . . gµn−k
(xn)d2x1 . . .d2xn, (2.4)

where e is the coupling constant of the interaction be-
tween fermions and bosons and gµk

(x) is a c-number test
function from S (

R2
)

(Schwartz space). The properties of
T
µ1,...,µn−k
n (x1, . . . , xn) are fixed by the required proper-

ties of S (see [17]).
From the equation

S(g)−1 = (1 + T )−1 = 1 +
∞∑
r=1

(−T )r (2.5)

we get

T̃n(X) =
n∑
r=1

(−)r
∑
Pr

Tn1 (X1) . . . Tnr
(Xr) , (2.6)

where the second sum runs over all partitions Pr of X =
{x1, x2, . . . , xn} into r disjoint non-empty subsets.

For a meaningful definition of our field theory model
we have to define the first order terms of (2.2):

S(1)(g) ≡
∫

{eT1(x) + gµ(x)T
µ
1 (x)} d2x, (2.7)

where

T1(x) = i : ψ(x)6Aψ(x) :, (2.8)

Tµ1 (x) = i : ψ(x)γµψ(x) : . (2.9)

The fields ψ(x) and ψ(x) represent both fermion and an-
tifermion and the Aµ is a vector boson field. All fields
appearing in (2.8) and (2.9) are free since we work with
a perturbation expansion. The masses of the particles we
denote mψ for an (anti)fermion and mA for a boson field.
Note that we start with the model containing a massive
field in order to avoid problems with infrared singularities.
For the further properties of the fields see Appendix A.

Using (2.1) and (2.2) we derive

Jµ(x) = Jµfree(x) (2.10)

+
1
i

∞∑
n=1

en

n!

∫
Aµn+1(x1, . . . , xn;x)d2x1 . . .d2xn,

where
Jµfree(x) =: ψ(x)γµψ(x) : (2.11)

and Aµn+1 is the so-called advanced (n+1)-point function

Aµn+1(x1, . . . , xn;x) =
∑
P 0

2

T̃m (X\Y )Tµn−m (Y, x) .

(2.12)
Thus the “interacting” current contains besides the free
part also the part which comes from the interaction. The
symbol

∑
P 0

2
denotes the summation over all partitions of

the set X including the empty subset X\Y = 60. The label
“advanced” means that the support of Aµn+1 is

supp Aµn+1(x1, x2, . . . , xn;x) ⊆ Γ−
n+1 (x) ,

where

Γ−
n+1 (x) ≡

{
{xi}ni=1| (xi − x)2 ≥ 0, x0

i ≤ x0
}
,

i.e. the Aµn+1 vanish if an arbitrary x0
i is greater then x0.

For reasons which will become clear later we rewrite
(2.12) in the form

Aµn+1(x1, . . . , xn;x)

=
∑
Π

θ (x, xi1 , . . . , xin)Cn (x, xi1 , xi2 , . . . , xin) , (2.13)

where

Cn (x, xi1 , xi2 , . . . , xin)
= [. . . [[T µ

1 (x) , T1 (xi1)] , T1 (xi2)] . . . , T1 (xin)] (2.14)

θ (x, xi1 , . . . , xin)

= θ
(
x0 − x0

i1

)
θ
(
x0
i1 − x0

i2

)
. . . θ

(
x0
in−1

− x0
in

)

and the summation runs over all permutations of the el-
ements of X. (The “advancing” of the support is then
evident.)

The step from (2.12) to (2.13) is generally not pos-
sible but in our case it can be taken because we work
in two dimensions. In this case all functions Tk are well
defined (non-singular) and therefore we can multiply
Cn (x, xi1 , xi2 , . . . , xin) with θ (x, xi1 , . . . , xin). For further
details see Appendix B.

Combining (2.10) and (2.13) we get

Jµ(x) =
1
i

∞∑
n=0

enJµn (x), (2.15)

where

Jµ0 (x) = iJµfree(x) = T µ
1 (x) , (2.16)

Jµn (x) =
∫
θ (x, x1, x2, . . . , xn)

×Cn (x, x1, x2, . . . , xn) d2x1d2x2 . . .d2xn. (2.17)

Nevertheless the definition (2.1) has to be slightly mod-
ified if we (naturally) require that the vacuum expectation
value of the “interacting” current Jµ(x) be equal to zero.

Our redefinition is then straightforward

Jµint(x) ≡ Jµ(x) − 〈0|Jµ(x) |0〉

≡ 1
i

∞∑
n=0

en (Jµn (x) − 〈0|Jµn (x) |0〉) . (2.18)
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3 Commutator of “interacting” currents

Now we are ready to calculate the commutator of two
“interacting” currents. Using (2.18) we write

[Jµint(x), J
ν
int(y)]E.T. = [Jµ(x), Jν(y)]E.T.

= −
∞∑
n=0

en
n∑
i=0

[
Jµi (x), Jνn−i(y)

]
, (3.1)

and according to formulae (2.17), (2.14) and due to the
fact [18] that

Aµνn+2(y, x1, . . . , xn;x) −Aνµn+2(x, x1, . . . , xn; y)

=
∑
i1...in

n∑
k=0

1
k! (n− k)!

× [
Aµk+1(xi1 , . . . , xik ;x), Aνn+1−k(xik+1 , . . . , xin ; y)

]
, (3.2)

we finally get

[Jµint(x), J
ν
int(y)]E.T.

= −
∞∑
n=0

en
∫
θ (x, x1, x2, . . . , xn)

× [
. . .

[
[T µ

1 (x) , T ν
1 (y)]E.T. , T1 (x1)

]
. . . , T1 (xn)

]
×d2x1d2x2 . . .d2xn. (3.3)

However, it turns out that only the first term in the sum
contributes. To see this, one has to realize that the oper-
ator relation

[T µ
1 (x) , T ν

1 (y)]E.T. ∼ 1 (3.4)

is valid. Indeed, using the Wick theorem we express
[Tµ1 (x) , T ν1 (y)] in terms of the normally ordered products

[Tµ1 (x) , T ν1 (y)] = i : ψ(y)γνS (y − x) γµψ(x) :

−i : ψ(x)γµS (x− y) γνψ(y) :

+tr
{
S(−) (x− y) γνS(+) (y − x) γµ

− S(−) (y − x) γµS(+) (x− y) γν
}
. (3.5)

In the equal-time limit we have

S (x− y) |E.T. = iγ0δ
(
x1 − y1) (3.6)

and because in the 1 + 1 dimensions the identity

γµγ0γν = γνγ0γµ (3.7)

holds, the relation (3.4) is proved.
Note that here we are working with normal ordered

operators, which are well defined in Fock space. Therefore
we can indeed write

i : ψ(y)γνS (y − x) γµψ(x) :

−i : ψ(x)γµS (x− y) γνψ(y) : |E.T. = 0, (3.8)

i.e. the RHS of (3.8) is not given as the difference of two
infinities [19].

Thus, we can conclude that no contribution from the
interaction appears, i.e.

[Jµint(x), J
ν
int(y)]E.T. = [Jµ0 (x), Jν0 (y)]E.T. . (3.9)

This is the main result of this article.
Up to now we kept the masses mψ and mA non-zero

in order to have all operators well defined. Let us consider
a limiting procedure

{mψ,mA} → 0,

where {. . .} → 0 means that the values of one or both el-
ements of {. . .} go to zero in the above calculation of the
commutator (3.1). It is clear that this procedure exists
in our case and is unique in the sense that for arbitrary
(non-zero) values of mψ and mA it gives the same result.
Moreover, in 1+1 dimensions it is impossible to consider a
massless vector field without introducing an infrared cut-
off (or restricting test functions; for details see Appenix
A, [20] and the references given there). With this cutoff
all operators are well defined and we can conclude that
our result is valid in this sense also for the gauge theory.
On the other hand, in the case of mψ = 0 the theory is
infrared safe, but for example the calculation of the vac-
uum polarization is not well defined without introducing
an infrared cutoff.

As the author has checked, the same result (3.9) can
be obtained in the bosonization scheme [21]. Moreover, it
can be shown that [13] (where mψ = 0) for the model con-
sidered here leads, in fact, to the same answer2. Therefore
a connection between these approaches and our scheme
might exist.

4 Conclusion

We have calculated the commutator of “interacting” cur-
rents in the simple two-dimensional model describing the
interaction of fermions with a vector field. We have shown
that the interaction does not change the result obtained
within the theory of free fermions. A similar result we also
expect to occur in 3 + 1 dimensions; however, the corre-
sponding calculations cannot be carried out in the same
way in the 3 + 1 dimensions because the equality

∑
P 0

2

T̃m (X\Y )Tµn−m (Y, x)

=
∑
Π

θ (x, xi1 , . . . , xin)Cn (x, xi1 , . . . , xin) (4.1)

is no longer valid.
There is another difference between the 1+1 and 3+1

dimensions. The theory in 1 + 1 dimensions is finite. This
2 The result for the commutator of two currents published

in [13] is not correct (private communication of the author).
Nevertheless for the model considered here the original and
corrected results give the same answer.
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implies that we do not need any counterterms. Therefore
there is no operator mixing in contrast to the 3+1 dimen-
sions [22] and

[Aµint (x) , Jνint (y)]E.T. = 0.

The other types of couplings (e.g. chiral or axial) are under
consideration within the framework of our formalism. The
results might then be compared (in the limitmψ = 0) with
those of [13].

In view of the intimate connection between the
Schwinger terms and the anomaly, our result naturally
suggests another (open) question concerning its possible
relation to the Adler–Bardeen theorem. However, a gen-
eral proof that quantized gauge fields do not change the
result of the external fields is still missing.
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Appendix

A: Fields

For the calculation we have to know the following proper-
ties of free fields.

Vector field

The lagrangian of a free massive vector field is

LA = −1
4
FµνFµν +

1
2
m2
AA

µAµ+B∂µA
µ+

1
2
αB2. (A.1)

The form of the commutator
[
A(−)
µ (x) , A(+)

ν (y)
]

= − 1
2π

∫
d2p θ

(
p0)

×
[
gµνδ

(
p2 −m2

A

) − pµpν
m2
A

(
δ
(
p2 −m2

A

)

− δ
(
p2 − αm2

A

))]
e−ip(x−y), (A.2)

implies its good behavior (as p−2) in the momenta space.

Naively, the limit m2
A → 0 leads to the commutator

[
A(−)
µ (x) , A(+)

ν (y)
]

= − 1
2π
gµν

×
∫

d2pθ
(
p0) δ (

p2) e−ip(x−y). (A.3)

Unfortunately, because the distribution

θ (p0) δ
(
p2) (A.4)

is not a well-defined tempered distribution, e.g. if we con-
sider the function e−p2

E = e−(p0)2

e−(p1)2 ∈ S (Schwartz
space) then the integral∫

d2p θ (±p0) δ
(
p2) e−p2

E (A.5)

is not finite, and we have two possibilities.
The first one is to say that the massless scalar (vector)

field in 1 + 1 dimensions does not exist. This deduction is
quite legitimate in the framework of the pure QFT.

The other possibility is to violate some of the basic
axioms of the QFT as is discussed and done in [20]. We
can restrict test functions, or introduce some cutoff term
in the definition of the field or redefine D(±) (x; 0). We
have

D(±) (x; 0) = ∓ i
2π

∫
dp1 1

|p1|
[
e−ipx − θ

(
κ− |p1|)].(A.6)

Here we use the latter variant (following [20]) but it should
be said that all the above-mentioned variants are, as to the
final effect, equivalent. Therefore the whole calculation has
to be carried out keeping the infrared cutoff finite, and in
the chosen approach it is not possible to remove it.

Fermionic field

The Lagrangian of a free fermionic field is

Lf = ψ(x) (i 6∂ −mψ)ψ(x). (A.7)

The quantization procedure in 1 + 1 dimensions does not
contain any infrared problems even in the massless case
because of the following form of the commutator:

[
ψ(−)
α (x), ψ

(+)
β (y)

]
= − i

2π

×
∫

d2p 6p θ (
p0) δ (

p2) e−ip(x−y), (A.8)

which behaves as p−1 in the momentum space.

B: The transition step

To justify the transition from (2.12) to (2.13) we introduce
the distribution Dµ

n+1

Dµ
n+1(x1, . . . , xn;x) ≡ Rµn+1(x1, . . . , xn;x)

− Aµn+1(x1, . . . , xn;x), (B.1)
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where

Rµn+1(x1, . . . , xn;x) ≡
∑
P 0

2

Tµn−m (Y, x) T̃m (X\Y ) . (B.2)

It is possible to show that

supp Rµn+1(x1, x2, . . . , xn;x) ⊆ Γ+
n+1 (x) , (B.3)

where

Γ+
n+1 (x) ≡

{
{xi}ni=1| (xi − x)2 ≥ 0, x0

i ≥ x0
}

(B.4)

and therefore Dµ
n+1 has a causal support, i.e.

supp Dµ
n+1 (X,x) ⊆ Γ+

n+1 (x) ∪ Γ−
n+1 (x) . (B.5)

It is clear that if Dµ
n+1 is not singular then Aµn+1 can be

expressed as

Aµn+1(x1, . . . , xn;x)

= −
n∏
i=1

θ
(
x0 − x0

i

)
Dµ
n+1(x1, . . . , xn;x). (B.6)

Further, we introduce the “truncated” distributions A′µ
n+1

and R′µ
n+1

A′µ
n+1 ≡

∑
P2

T̃m (X\Y )Tµn−m (Y, x) , (B.7)

R′ µ
n+1 ≡

∑
P2

Tµn−m (Y, x) T̃m (X\Y ) , (B.8)

where
∑
P2

means the summation over all partitions of
the set X to non-empty subsets. Using (B.7) and (B.8)
the distribution (B.1) can be expressed as

Dµ
n+1 = R′µ

n+1 −A′µ
n+1. (B.9)

There is one important difference between (B.1) and (B.9).
The latter gives us the possibility to expressDµ

n+1 in terms
of the n-point function Tn.

Example:

Dµ
2 (x1;x) = R′µ

2 (x1;x) −A′µ
2 (x1;x) (B.10)

and if Dµ
2 is not singular then we can write

Aµ2 (x1;x) = −θ (
x0 − x0

1
)
Dµ

2 (x1;x), (B.11)

i.e. we split Dµ
2 . Then using (B.11) we get

Aµ2 (x1;x) = −θ (
x0 − x0

π1

) (
R′ µ

2 (x1;x) −A′ µ
2 (x1;x)

)
= θ

(
x0 − x0

π1

)
[Tµ1 (x), T1(x1)] . (B.12)

Furthermore according to the definitions (2.12), (B.7),
(B.2) and (B.8) we have

Tµn (x1, . . . , xn−1, x) = Rµn −R′µ
n = Aµn −A′µ

n (B.13)

and repeatedly using (B.6) we can finally express Dµ
n+1

in terms of the 1-point function T (µ)
1 . In that way we get

Aµn+1 in (2.13) by combining (B.6) and the above proce-
dure.

This routine is equivalent [18] to the application of the
following equality:

Tµn+1 (x1, . . . , xn, x) = T (Tµ1 (x)T1(x1) . . . T1(xn)) ,

where

T (Tµ1 (x)T1(x1) . . . T1(xn)) (B.14)

=
∑
Π

θ (x, xi1 , . . . , xin)Tµ1 (x)T1(xi1) . . . T1(xin).

Example:

Tµ2 (x1, x) = −θ (
x0 − x0

1
)
Dµ

2 −A′µ
2

= −θ (
x0 − x0

1
)
R′µ

2 − (
1 − θ

(
x0 − x0

1
))
A′µ

2

= θ
(
x0 − x0

1
)
Tµ1 (x)T1(x1) + θ

(
x0

1 − x0)Tµ1 (x)T1(x1)

= T (Tµ1 (x)T (x1)) . (B.15)

However, as was shown in [17] the splitting of an arbi-
trary distribution with causal support to a retarded and
an advanced part via multiplication by the combination of
theta functions, i.e. (B.6), is not generally a well-defined
procedure.

The reason why we can do it here is that we work in
two dimensions. We show that the terms Ti1 . . . Tik , ij ∈
{1, . . . , n}, ∑k

j=1 ij = n+ 1, which are “sitting” in Dn+1,
are correctly defined and they have a non-singular behav-
ior. The last property enables their multiplication by the
combination of the theta functions.

Every term Ti1 . . . Tik is expressible as a sum of terms
of the normally ordered operators (graphs) of the form

Ti1 . . . Tik ∼
∑
k

T gk

n+1(x1, . . . , xn, x) (B.16)

where

T gn(x1, . . . , xn)

=:
nf∏
i=1

ψ(xkj )tg (x1, . . . , xn)
nf∏
i=1

ψ(xnj ) ::
nb∏
i=1

A
(
xmj

)
:

(B.17)

and nf is the number of external fermions (or anti-
fermions), nb the number of the external massive bosons
and tg (x1, . . . , xn) is c-number distribution.

In the dimension d the graph g (B.17) has the singular
order

ω (g) = n

(
d

2
− 2

)
+d−nb

(
d

2
− 1

)
−nf (d− 1) , (B.18)

and for d = 2 we get

ω (g) = 2 − n− nf . (B.19)
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We see that the problematic (singular) case ω (g) ≥ 0 can
appear only for n = 2. All higher-order graphs do not con-
tain any singularity. Moreover the c-number distribution
in the 2-point causal function really has ω (g) = −2. This
all means that all graphs (including their subgraphs) are
not singular, the terms Ti1 . . . Tik are well defined and can
be multiplied by the combination of theta functions.

Therefore the formula (2.13) is consistent with (2.12).
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(1973)
17. G. Scharf, Finite quantum electrodynamics - The causal

approach, 2nd edition (Springer-Verlag, Berlin 1995)
18. S.S. Schweber, An introduction to relativistic quantum

theory (Row, Peterson and Co, Evanston, Ill. Elmsford,
New York, 1961) (Russion translation: GILL, Moscow
1963, p. 709–713)

19. G. Källen, Gradient terms in commutators of currents and
fields, Lectures given at winter schools in Karpacz and
Schladming, February and March 1968

20. N. Nakanishi, I. Ojima, Covariant operator formalism of
gauge theories and quantum gravity (World Scientific Sin-
gapore 1990)

21. E. Abdalla, M.C.B. Abdalla, K.D. Rothe, Non-perturb-
ative methods in 2 dimensional quantum field theory
(World Scientific, Singapore 1991)

22. M. Chaichian, K. Nishijima, The Goto–Imamura–Schwin-
ger term and renormalization group [hep-th/9909159]


